[image: image7.wmf]

C

o

n

n

e

c

t

i

o

n

C

l

a

s

s

M

e

s

s

a

g

e

R

o

u

t

e

r

I

d

e

n

t

i

t

y

O

b

j

e

c

t

I

/

O

E

x

p

l

i

c

i

t

M

s

g

.

E

t

h

e

r

N

e

t

/

I

P

N

e

t

w

o

r

k

Assembly Object

I

/

P

O

/

P

E

t

h

e

r

N

e

t

L

i

n

k

O

b

j

e

c

t

T

C

P

/

I

P

I

n

t

e

r

f

a

c

e

O

b

j

e

c

t

Roof Support

Module Object

[image: image8.wmf]

LASC Level 1 Specification
Conformance Process for Specification and Acceptance Testing of LASC Communication Protocol
	VERSION: [1.0]
	REVISION DATE: [1/10/09]

	Approver Name
	Title
	Signature
	Date

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
41.
Introduction

41.1
EIP overview

51.2
EIP Objects

71.3
Session Overview

71.4
Message Protocol

91.5
NOP Command

91.6
ListServices Command

111.7
ListIdentity Command

121.8
RegisterSession Command

131.9
UnRegisterSession Command

131.10
SendRRData Command

151.11
SendUnitData Command

151.12
Full Message Layout

162.
EIP server requirements

172.1
Mandatory Class Details

203.
EIP client requirements

203.1
Base Ethernet communications

204.
Testing Base Ethernet Communications

204.1
Test ICMP

204.2
Test UDP request/response

204.3
Test TCP request/response

204.4
Test 16 concurrent TCP connections

214.5
Test Cable Pull

225.
Testing Encapsulation Commands

225.1
Test NOP (TCP)

225.2
Test List Identity (TCP or UDP)

225.3
Test RegisterSession (TCP)

235.4
Test UnRegisterSession TCP

235.5
Test ListServices (UDP or TCP)

245.6
Test SendRRData (TCP)

256.
Testing Session Handling/message handling

255.7
Multiple sessions

255.8
Session Timeout

265.9
Message Handling

287.
Testing Implementation of common services

286.1
Get Attribute Single

286.2
Set Attribute Single

298.
Testing Implementation of Core Objects

295.10
EDS objects checked

319.
Testing Error Codes

3110.
Timeout testing

3111.
Retest concurrent sessions

3212.
Appendix A– Data Sizes

1. Introduction

This document covers the requirements for a device (server) or client to meet LASC Level 1 compliance levels. This covers, in brief, the EIP (Ethernet/IP) stack (Layers 1, 2, 3/4) and a subset of the Application layer functionality (Layer 7). This is the full communication channel between LASC compliant modules.
This layer of certification is to ensure a basic level of information transfer between any server/client pair.
This document does not cover functionality or message responses outside the specific areas noted. That functionality is covered in the specific Level 2 specification for the device.
1.1 EIP overview

LASC communication protocol is built on the foundation of EIP and CIP. Full specifications may be obtained from ODVA; however this document defines the smaller subset of the requirements that must be implemented for LASC compliance.

The EIP protocol is designed for the exchange of time-critical application information. EIP makes use of standard Ethernet and TCP/IP technology to transport CIP (Control and Information Protocol) communications packets.
[image: image9.png]| Nedm Jacem] on ot At | SemmC o
S ame | DataType | Descripton of Attiv i
T | Remusd | Ger |Gverisce Speed [UDVT | aernce peed sty | Speedim oy o
e 0110, 100, 1000,
T Requd | Get [metes DWORD | srtace s s Sicmap of mernce
355 See secton
54221
S| egwa | G [P AT of | MAC s e e secton
aae SUsnT:

54223

CIP is a peer to peer object oriented protocol that provides connection between devices and controllers

1.2 EIP Objects

An object consists of the following (See Figure 4-1.1):
· A set of closely related attributes (data)

· A set of behaviours (functionality)

· A set of services (common or object–specific)

· A set of connections.
[image: image10.png]

A Class Attribute is an attribute that is shared by all objects within the same class.

An Instance Attribute is an attribute that is unique to an object instance and not shared by the object class.

Common Services are those whose request/response parameters and required. Behaviours are defined in CIP Common Specification, Appendix A.

[image: image11.png]Figure 4-1.1 Defining an Object Specification

Behaviors

Connections: Attributes

Image source: ODVA CIP specification

A typical object model for a device will look generally like this:

1.3 Session Overview

The normal life of an EIP session would generally involve the following steps:

· A Client opens a TCP connection to <server IP address>, port 44818

· The client can send non-message commands (NOP,ListServices,ListIdentity etc)

· The server MUST respond to commands requiring a response with a message indicating status
· the client sends RegisterSession message

· the server responds with the session id to be used in all future messages

· The client uses SendRRData to encapsulate data/function requests

· the server responds to every message with a response indicating status, data etc

· When the client has finished, it sends an UnregisterSession message

· The client TCP connection can be closed

1.4 Message Protocol

While the CIP specifies both a ‘connected’ and ‘unconnected’ communication, the LASC standard is to use unconnected messages in all cases. These messages are unconditionally point to point.

There are 7 mandatory commands that must be implemented in all devices shown in the following table:
[image: image1.png]2-3.2 Encapsulation Commands

Name

Comment

NOP

(may be sent only using TCP)

Reserved for legacy (RA)

Reserved for legacy (RA)

and
0x0003

00004 | ListServices (may be sent using either UDP or TCP)
0x00! Reserved for legacy (RA)

0

Reserved for future expansion of this specification

through | (Products compliant with this specification shall
030062 | not use command codes in this range)
0x0063 | Listldentity (may be sent using either UDP or TCP)
0x006¢ | Listaterfaces optional (may be seat using either UDP or
CP)
030065 | RegisterSession (may be seat only using TCP)
030066 | UnRegisterSession (may be seat only using TCP)
0%0067 | Reserved for legacy (RA)
through
0x006E
0x006F | SendRRData (may be sent only using TCP)
SeadUnitData (may be sent only using TCP)
Reserved for legacy (RA)
TadicateStatus optional (may be seat oaly using TCP)
Cancel optional (may be seat oaly using TCP)

through

0x00C7

Reserved for legacy (RA)

0x00C8
through
OXFFFF

Reserved for future expansion of this specification
(Products compliant with this specification shall
10t used command codes in this ra

The other optional commands may be implemented. Every device shall accept commands that it does not support and return a ‘command not supported’ status code without breaking the session or TCP connection.
NOTE: Message structure items are coded in little endian unless specified otherwise.
1.5 NOP Command
The NOP command may be used to check TCP connection status. The client or server may generate this message. The receiver MUST not send any response to this message.

Message Structure

	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0000
	NOP

	Length (2)
	0x0000
	No data to be attached

	Session handle (4)
	0x00000000
	Ignored

	status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Ignored

	Options (4)
	0x00000000
	Must be 0

1.6 ListServices Command

This command is used to determine which encapsulation service classes are supported. There is only one service class defined, so the response message is completely defined.
Message Structure
	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0004
	List Services

	Length (2)
	0x0000
	No data to be attached

	Session handle (4)
	0x00000000
	Ignored

	status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Any Sender context – usually message number

	Options (4)
	0x00000000
	Must be 0

Response Structure

	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0004
	List Services

	Length (2)
	0x001a
	Response data portion

	Session handle (4)
	0x00000000
	Ignored

	status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Preserved Sender context from request message

	Options (4)
	0x00000000
	Must be 0

	Item Count (2)
	0x0001
	1 item

	Item Type code (2)
	0x0100
	Communications service class

	Item Length (2)
	0x0014
	Length of the item data

	Version (2)
	0x0001
	

	Capability flags (2)
	0x0020
	Supports TCP CIP

	Name (16)
	434f4d4d554e49434154494f4e530000
	“Communications”

1.7 ListIdentity Command
This command may be issued by a client broadcast over UDP to determine available EIP servers on the network.

Message Structure

	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0063
	Identity

	Length (2)
	0x0000
	No data to be attached

	Session handle (4)
	0x00000000
	Ignored

	status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Must be 0

	Options (4)
	0x00000000
	Must be 0

Response structure

	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0063
	List Services

	Length (2)
	0x002d
	Response data portion

	Session handle (4)
	0x00000000
	Ignored

	status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Preserved Sender context from request message

	Options (4)
	0x00000000
	Must be 0

	Item count
	0x000x
	Items to follow

	Item type code (2)
	0x000c
	Must be 0x0c

	Item Length (2)
	0x00xx
	

	Protocol version (2)
	0x0000
	Must be 0

	Socket Address sin_family (2)
	0x0000
	All following items are defined in the EDS

	Socket Address sin_port (2)
	0xaf12
	44818 for EIP

	Socket Address sin_address (4)
	0x7f000001
	Big-endian 127.0.0.1

	Socket Address sin_zero (8)
	0x0000000000000000
	

	Vendor id (2)
	0x0000
	768 for CSIRO

	Device type (2)
	0x0000
	

	Product code (2)
	0x0000
	

	Revision (2)
	0x0001
	

	Status (2)
	0x0000
	

	Serial Number (4)
	0x0000
	

	Product name (8)
	SPMS
	From EDS

	State (1)
	0x00
	

1.8 RegisterSession Command
This message is sent to commence a data transfer session.

Message Structure

	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0065
	Register session

	Length (2)
	0x0004
	

	Session handle (4)
	0x00000000
	Ignored

	Status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Any Sender context – usually message number

	Options (4)
	0x00000000
	Must be 0

	Protocol Version
	0x0001
	

	Options Flag
	0x0000
	reserved

Response structure

	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0065
	List Services

	Length (2)
	0x0004
	

	Session handle (4)
	0x000000xx
	Session id to be used for all future messages

	status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Preserved Sender context from request message

	Options (4)
	0x00000000
	Must be 0

	Protocol Version (2)
	0x0000
	Must be 0

	Options Flags (2)
	0x0000
	Must be 0

1.9 UnRegisterSession Command
This message is sent to cease a data transfer session. Either an originator or a target may send this command to terminate the session. The receiver shall initiate a close of the underlying TCP/IP connection when it receives this command
Message Structure
	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x0066
	Register session

	Length (2)
	0x0000
	

	Session handle (4)
	0x00000000
	Ignored

	status (4)
	0x00000000
	Must be 0

	Sender context (8)
	0x0000000000000000
	Any Sender context – usually message number

	Options (4)
	0x00000000
	Must be 0

There is to be NO response from this message
1.10 SendRRData Command

Message Structure
	Field
	Example (bold is mandatory)
	Notes

	CMD(2)
	0x006f
	

	Length (2)
	0x0018
	

	Session handle (4)
	0x00000001
	

	status (4)
	0x00000000
	

	sender context (8)
	0x0000000000000001
	

	Options (4)
	0x00000000
	

	
	
	

	Iface Handle (4)
	0x00000000
	

	Timeout (2)
	0x0000
	

	Item Count (2)
	0x0002
	

	Address Type (2)
	0x0000
	

	Address Length (2)
	0x0000
	

	Data Type ID (2)
	0x00b2
	

	Data Length (2)
	0x08
	

	
	
	

	Service (1)
	0x0e
	

	Path Size (1)
	0x03
	

	Path (size*2)
	0x206424003003
	Class tag = 0x20

Class=0x64

Instance tag=0x24

Instance = 0

Attribute tag =0x30

Attribute = 3

	Data (variable)
	none
	

Response example for the above packet

	
	
	Notes

	CMD(2)
	0x006f
	

	Length (2)
	0x0016
	

	Session handle (4)
	0x00000001
	

	status (4)
	0x00000000
	

	sender context (8)
	0x0000000000000001
	

	Options (4)
	0x00000000
	

	
	
	

	Iface Handle (4)
	0x00000000
	

	Timeout (2)
	0x0000
	

	Item Count (2)
	0x0002
	

	Address Type (2)
	0x0000
	

	Address Length (2)
	0x0000
	

	Data Type ID (2)
	0x00b2
	

	Data Length (2)
	0x06
	

	Service (1)
	0x8e
	Note that the requested service is OR’d with 0x80 in the response

	Reserved
	0x00
	

	Status
	0x00
	

	Additional status size
	0x00
	

	Data (variable)
	0x7400
	The size of the data returned is DataLength-4-additionalStsSize*2

1.11 SendUnitData Command
This command is unused in the LASC subset of the EIP protocol. A Client should not send this message. A server should not reply to this message.
1.12 Full Message Layout

A full message including all the headers is as shown in the image below:

[image: image2.png]Ethernet Header, 14 Bytes
Destination (6), St (6). Type (2)

1P Header, 20 Bytes

VerTHL (1), Type (1), Total Length (2), ID (2), Flags Offset(2), Time to live (1), Protocol (1), Checksum
(2). Source address (4), Destination (4), Options/padding (3)

TCP Header, 20 Bytes

Source port (2), Dest Port (2), Sequence £(4), Ack # (4), Data offset (1), rsvd Flags/window (3),
checksum (12), urgent pointer (2), options/padding (4)

EIP Header, 24 Bytes
CMD (2). Length (2), Session handle (4), status (4), sender context (8), options (4)

TUCMM Header, 16 Bytes

Iface Handle (4), Timeout (2), Item Count (2), Address Type (2), Address Length (2), Data
Type ID (2), Data Length (2)

RR Message (variable size)

Service (1), Path Size (1), Path (size*2), Data (variable)
Or-

RR Response (variable size)

Service (1), Reserved (1), Status (1), Add Sts Size(1), Additional status (size *2),
Response Data (variable)

RR Messages have a fixed overhead of 113 bytes + variable size path + variable size data.
Responses have a fixed overhead of 115 bytes + variable size additional status + variable size data.
2. EIP server requirements
Level 1 compliance covers the basic communication protocols and required functionality for every device.

Every server implementation MUST have at least the following functionality:
1. Base Ethernet communications, including
· TCP/IP connection, including error handling and connection checking (RFC 793)

· IP Version 4 (RFC 791)

· UDP (RFC 768)

· Address Resolution Protocol (ARP) (RFC 826)

· Internet Control Messaging Protocol (ICMP) (RFC 792)

· Internet Group Management Protocol (RFC 1112 + 2236)

· IEEE 802.3 as defined in RFC 894

2. Correct and valid responses to Encapsulation commands
· 0x0, NOP

· 0x4, List Services

· 0x63, List Identity

· 0x65, Register Session

· 0x66, Unregister Session

· 0x6f, Send RR Data

· 0x70, Send Unit Data
3. Unconnected message handling Including error handling, message timeouts and status responses
4. Implementation of core objects
· Class 0x01 (Identity Object)

· Class Attribute 1 (Revision)

· Instance Attributes 1-7

· Class 0xf5 (TCP/IP Interface Object)

· Class Attribute 1 (Revision)

· Instance Attributes 1-6

· Class 0xf6 (Ethernet link Object)

· Class Attribute 1 (Revision)

· Instance Attributes 1-3

5. Implementation of common services
· 0x0e, Get Attribute Single

· 0x10, Set Attribute Single
6. Implementation of error responses
· 0x0, success

· 0x1, invalid command

· 0x3, incorrect data

· 0x64, invalid session handle

· 0x65, invalid length

· 0x69, unsupported command revision
7. Implementation of message forwarding
8. EDS description file for compliance testing.
Other functionality may be described in the Level 2 components of the device specifications.
2.1 Mandatory Class Details
2.1.1 Identity Object

[image: image3.png]At [Needin | Access [NV Name Decriptjon of Atribute
10| mpien | Ruie Tope
T [Recure (G ESam ey
vendor by susber
3[R o GET | tatcenon ot sesel e
o
T [o CET |Gt ats
[m——
indiatvesdor
e o == STRDCT [Reviion o the vom e
ot ey O reprses
EET e
Shmorfn 0BT
5 [Ree [o E ORD |Gy s af G
& [o COBT | Senl e o v
TR (o SEORT | Fommasdee
STENNG | cemntcsion

Vendor shall be 768

Device type shall be 100

The other details shall be vendor-specific and entered in the EDS for the device
2.1.2 TCP object

[image: image4.png]Atir | NeedIn | Access Name | DataType | Descripfionof | Semantics of Values
D | tmplen | ule Attribute
equied | Gt Sans DWORD | tarertace | Sas secion 53221
B Contzwno | DWORD | lmate i map of capabiy
Capabiey capabiy fags Sea sactn 5
BEETTN e Coufzuaion | DWORD | atrfca coumol Feommal

Conol

s

[image: image5.png]Requied | Ges Paysical Lok | STRUCT | Path to physical | See section 5-3224
b o ink object
Pat e OIT [Smectenn | Numberof lonr
words Pt
o Padied | Logical segmens | The pat s resmiced
EPATH | sdemningtie | toone ogealclast
physicaliak | sopment and one
abgect Iogica ztaace
sgman: The
s sze s 12
byees See Appendis
CofVolume 1.
Logical Segmens
Femaed |5 STROCT of | TCP TP memwark [5oe saction 53228
ey
coutigusion
P Adie DD |The device s 7| Value of O sces 0
saaes P saires s b
contigued
Ortewise, he P
adives hal be s 0
s vslid Csss 4. B, or
€ saoes sl
b a0t loophsck
sddress (12700)
ook sk | UDIVT | Tos devess | Valne of mdicates a0
ek mack | senwork madk addess
s e consigued
Gatemay TDINT [et greway | Vale of 0 dicares >
e sace P saires s b
contigued
Ortewise, he P
adives hal be s 0
s vslid Csss 4. B, or
€ saoes sl
b a0t loophsck
sddress (12700
Tome Sever | UDBT [Prmayuame[Value ofmimm e
s o sever sdvess
s b contigured
Ortirise he s
coveraddves all be
o s vl Claz A
5.0 C adirss.
e Sever2 | UDIVT | Seconduy same | Value o mdicares 20

secondary name sever
adivess s e
contiued

Ortrwie, he e
coveraddves all be
o s vl Claz A
5, or C adress.

The mandatory information in the EDS for this class will be the IP Address, coded in dotted string (e.g. 10.0.0.10) in Attribute 5.

2.1.3 Ethernet object

[image: image12.png]P Scfety™
Profles

Object Library Safely
(Communications, Applictions, Time Synchronization) Objed Library

Data Manogement Services Safely Services
Explicit and /0 Messages and Messoges

Comnecion Management, Rouiing

Tcp/uop

DovicoNet
Network and Trensport

Ehernet CAN
CSMA/CD. ime Slo CSMA/NBA

Ethernet p A ControlNet DeviceNet
Physical Layer a Physical Layer [

EtherNet/IP™ CompoNet™ ControlNet™ DeviceNet™

3. EIP client requirements
Every client implementation MUST have at least the following functionality:

3.1 Base Ethernet communications
TCP/IP connection, including error handling and connection checking (RFC 793)

IP Version 4 (RFC 791)

UDP (RFC 768)

Address Resolution Protocol (ARP) (RFC 826)

Internet Control Messaging Protocol (ICMP) (RFC 792)

Internet Group Management Protocol (RFC 1112 + 2236)

IEEE 802.3 as defined in RFC 894

4. Testing Base Ethernet Communications

4.1 Test ICMP

The device is to be issued an ICMP (ping) message. The device should respond with its IP address. The round trip time should be less than 10ms.

4.2 Test UDP request/response

UDP is tested by sending a ListIdentity command (0x0063) via UDP, the device should respond with a valid ListIdentity response. The details for the ListIdentity packet should match the details coded in the EDS file supplied with the device.
4.3 Test TCP request/response
The TCP connection is tested by sending the ListIdentity command (0x0063) via TCP. The device should respond with a valid ListIdentity response, with values populated as per the EDS file provided with the device.
4.4 Test 16 concurrent TCP connections

16 concurrent TCP connections are to be simultaneously established by connecting to port 44818 of the device. Once these connections are established each connection is to have a Register Session command (0x0065) issued via TCP. Each of the sessions will respond with valid connection details. All responses should be identical to that of the tests above. The connections should now be closed.

4.5 Test Cable Pull
2sec / 120sec resume (for these tests there will be a network switch between the PC and the device being tested)

The user will be prompted by the testing software to remove the Ethernet cable for 2 seconds. The cable is to be disconnected directly from the device under test. After a 2 second pause the cable it to be re-inserted.

The user will be prompted by the testing software to remove the Ethernet cable for 120 seconds. The cable is to be disconnected directly from the device under test. After the 120 second pause the cable is to be re-inserted.

The user will be prompted by the testing software to remove the Ethernet cable for 2 seconds. The cable is to be disconnected directly from the PC. After a 2 second pause the cable it to be re-inserted.

The user will be prompted by the testing software to remove the Ethernet cable for 120 seconds. The cable is to be disconnected directly from the PC. After the 120 second pause the cable is to be re-inserted.

5. Testing Encapsulation Commands
5.1 Test NOP (TCP)
The NOP command may be used to test the underlying TCP connection without breaking any existing EIP session. The NOP may be sent by either the client or the server. There is no response to the NOP command.

Prerequisites: No EIP session. Send a NOP message and ensure no response is received.

Prerequisites: EIP session registered. Send a NOP message and ensure no response is received.

5.2 Test List Identity (TCP or UDP)
The ListIdentity message is sent by a client to identify EIP devices available. When sent as a UDP message, it is a broadcast to identify all devices on the subnet. When sent via TCP, it may be used to list the parameters of the device connected on the current TCP connection.
In all the tests below, each of the data items should be checked against the EDS for validity.

Prerequisites: No EIP session. Send a ListIdentity message via UDP. Ensure DUT responds with valid ListIdentity response.
Prerequisites: NO EIP session. Send a ListIdentity message via UDP broadcast. Ensure DUT responds with valid ListIdentity response.

Prerequisites: TCP communications channel. Send a ListIdentity message via TCP. Ensure DUT responds with valid ListIdentity response.

5.3 Test RegisterSession (TCP)
The RegisterSession message is used to commence a session between the client and the server. No messages other than NOP and ListIdentity may be validly used before the session has been started.
Where a response is received, the following items should be validated: Sender context, session handle, status and
Prerequisites: No EIP session. Send a RegisterSession message via UDP. Ensure no response is received
Prerequisites: No EIP session. Send a RegisterSession message via TCP. Ensure a valid response is received.

Prerequisites: No EIP session. Send a RegisterSession message via TCP with Protocol version 2. Ensure a valid response is received with status 0x69 and highest supported version in Protocol version field
5.4 Test UnRegisterSession TCP
The Unregister session is used to terminate the current session. The session is also closed when the TCP connection is lost. There is no response to this message

Prerequisites: No EIP session. Send an UnRegisterSession message. No response

Prerequisites: EIP session. Send an UnRegisterSession message. No response.

Prerequisites: EIP session. Send an UnRegisterSession message. Send another message with same session if. Error response

Prerequisites: No EIP session. Send an UnRegisterSession message with wrong session id. No response. Send other message with correct session id. Should still respond ok.

5.5 Test ListServices (UDP or TCP)
The ListServices message is used to identify which encapsulation service classes are supported (not the Explicit Messaging services such as Get_Attribute_Single) Currently, only one service is defined by EIP and it indicates that the device supports encapsulation of CIP packets.
Prerequisites: No EIP session. Send a ListServices message via UDP. Valid reply message from DUT.

Prerequisites: No EIP session. Send a ListServices message via TCP. Valid reply message from DUT.
Prerequisites: EIP session. Send a ListServices message via UDP. Valid reply message from DUT.

Prerequisites: EIP session. Send a ListServices message via TCP. Valid reply message from DUT.

5.6 Test SendRRData (TCP)
This message is the main transfer of encapsulated request/reply packets between the client and server. This message, for Landmark compliance purposes, is used solely to transfer UCMM (unconnected) messages as per the format described in section 1.10.

Details of required data for UCMM testing is in section 9.
Prerequisites: No EIP session. Send a SendRRData message via TCP. With class: 1, instance: 1, attribute: 1, service: 14. No reply message from DUT.

Prerequisites: EIP session. Send a SendRRData message via TCP. With class: 1, instance: 1, attribute: 1, service: 14. Valid reply message from DUT.

6. Testing Session Handling/message handling

This section describes the testing required to ensure that the device or application under test correctly handles messages and sessions.

5.7 Multiple sessions

Test 16 registered sessions simultaneously – each session should be given a unique session id.
Test RRData in each connected session – each message should receive a valid response, including correct session id and message context
5.8 Session Timeout

Test connected session timeout with no messages – the session should not have disconnected after 2 seconds.
Test connected session timeout with no messages – the session should have disconnected after 120 seconds.

5.9 Message Handling

Send truncated message, test message timeout – no response received.
Send Long messages (dual message), check response received for both messages – should receive valid responses.
Send garbled message (shorter than normal packet) – should get an error return
Send garbled message (same size as normal packet) – should get an error return

Send garbled message (longer than normal packet) – should get an error return

Send 1000 EIP messages with no wait time (stress test) –should get valid responses for each message
send messages with wrong session identifier – should get error message.
send messages with negative/same sender context – should get sender context copied and returns no error
send messages with previous (and closed) session handle -should get error message
send register, TCP fail then reconnect (cable pull pc side), messages should fail
send register, TCP fail then reconnect (cable pull pc side), unregister message should fail

send register, TCP fail then reconnect (cable pull device side), messages should fail

send register, TCP fail then reconnect (cable pull device side), unregister message should fail

send messages: nop, register, nop, listservices,nop, unregister – test nop does not interfere with normal operation
7. Testing Implementation of common services

6.1 Get Attribute Single

Class 1, instance 1, attribute 1 is read using SendMessage
6.2 Set Attribute Single

This will involve the write of an attribute.
8. Testing Implementation of Core Objects

5.10 EDS objects checked
Each Attribute in the EDS file for the device is checked for a valid response from the device.

If the attribute is implemented, then the General Status response should be 0x00 (Success). If the attribute is not implemented, then the General Status Response should be 0x05 (PATH destination unknown). If the attribute is not part of the object definition then the General Status Response should be 0x14 (Undefined attribute). If the proper General Status Response of 0x00 (Success) is returned then the size of the attribute is verified as well as its value.
The EDS file should consist of at least the following.

8.1.1 Identity Object

8.1.1.1 Test Attribute 1: Vendor Id

8.1.1.2 Test Attribute 2: Device Type

8.1.1.3 Test Attribute 3: Product Code

8.1.1.4 Test Attribute 4: Revision
8.1.1.5 Test Attribute 5: Status
8.1.1.6 Test Attribute 6: Serial Number
8.1.1.7 Test Attribute 7: Product name

8.1.2 TCP/IP Object (Class Code 0xf5)
8.1.2.1 Test Attribute 1: Revision (implemented)

For instance 1:

8.1.2.2 Test Attribute 1: Status
8.1.2.3 Test Attribute 2: Configuration Capability
8.1.2.4 Test Attribute 3: Configuration control
8.1.2.5 Test Attribute 4: Physical Link Object
8.1.2.6 Test Attribute 5: Interface Configuration
8.1.2.7 Test Attribute 6: Host Name
8.1.2.8 Test Attribute 7-99 (optional)

For instance 2:

8.1.2.9 Test Attribute 1, response should be 0x5 (path destination unknown)

8.1.3 Ethernet Link (Class Code 0xf6)

8.1.3.1 Test Attribute 1: Revision (implemented)

For instance 1:

8.1.3.2 Test Attribute 1: Interface Speed
8.1.3.3 Test Attribute 2: Interface Flags
8.1.3.4 Test Attribute 3: Physical address
8.1.3.5 Test Attribute 4-99 (optional)

9. Testing Error Codes
The correct error code should be provided in the status code field in the following situations
Error 0x1: invalid or unsupported encapsulation command

Error 0x3: Poorly formed or incomplete data in the data portion

Error 0x5: Path destination unknown

Error 0x64: invalid session handle

Error 0x65: invalid length message

Error 0x69: unsupported encapsulation protocol revision
10. Timeout testing
List Identity Response/UDP < 250ms

List Services Response/TCP (assuming existing TCP connection)< 250ms

Unconnected explicit response - TCP connection established (Specific internal object/attribute would be tested)< 100ms

Two back-to-back explicit message requests without dropping either > 1ms

11. Retest concurrent sessions

16 concurrent TCP connections are to be simultaneously established by connecting to port 44818 of the device. Once these connections are established each connection is to have a Register Session command (0x0065) issued via TCP. Each of the sessions will respond with valid connection details. All responses should be identical to that of the tests above. The connections should now be closed.

12. Appendix A– Data Sizes
[image: image6.png]Table C-2.1 Elementary Data Types

Keyword Description Range
Minimum Maximum
BOOL Boolean NOTE 1
SINT Short Integer -128 127
INT Integer -32768 32767
DINT Double Integer 231
LINT Long Integer 163
USINT Ui med Short Integer 0
UINT Unsigned Integer 0
UDINT Unsigned Double Integer 0
ULINT Unsigned Long Integer 0 2641
REAL Floating point NOTE 2
LREAL Long float NOTE 3
ITIME Duration (short) NOTE 12
TIME Duration NOTE 4
FTIME Duration (high resolution) NOTE 5.6
LTIME Duration (lon; NOTE 6.7
DATE Date only NOTE §
TIME_OF DAY or TOD Time of day NOTE 9
DATE_AND_TIME or DT | Date and time of day NOTE 10
STRIN: character string (1 byte per character)
character string (2 bytes per character) NOTE 6
character string (N-bytes per character) NOTE 6

	Version
	Description of Change
	Author
	Date

	1.0
	Created
	Mark Dunn
	4/2/08

	
	
	
	

[image: image13.png]NE041S> - Mmm

� EMBED Word.Picture.8 ���

- 33 – LASC Level1 Compliance Version 1.0

[image: image14.wmf]

C

o

n

n

e

c

t

i

o

n

C

l

a

s

s

M

e

s

s

a

g

e

R

o

u

t

e

r

I

d

e

n

t

i

t

y

O

b

j

e

c

t

I

/

O

E

x

p

l

i

c

i

t

M

s

g

.

E

t

h

e

r

N

e

t

/

I

P

N

e

t

w

o

r

k

Assembly Object

I

/

P

O

/

P

E

t

h

e

r

N

e

t

L

i

n

k

O

b

j

e

c

t

T

C

P

/

I

P

I

n

t

e

r

f

a

c

e

O

b

j

e

c

t

Roof Support

Module Object

[image: image15.png]Contact Us

Phone: 1300 363 400
+61 3 9545 2176

Email: enquiries@csiro.au

Web: www.csiro.au

Your CSIRO

Australia is founding its future on science and
innovation. Its national science agency, CSIRO,
is a powerhouse of ideas, technologies and
skills for building prosperity, growth, health and
sustainability. It serves governments, industries,

business and communities across the nation.

_1268810975.doc

C

o

n

n

e

c

t

i

o

n

C

l

a

s

s

M

e

s

s

a

g

e

R

o

u

t

e

r

I

d

e

n

t

i

t

y

O

b

j

e

c

t

I

/

O

E

x

p

l

i

c

i

t

M

s

g

.

E

t

h

e

r

N

e

t

/

I

P

N

e

t

w

o

r

k

Assembly Object

I

/

P

O

/

P

E

t

h

e

r

N

e

t

L

i

n

k

O

b

j

e

c

t

T

C

P

/

I

P

I

n

t

e

r

f

a

c

e

O

b

j

e

c

t

Roof Support Module Object

